If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9r^2+36r+32=0
a = 9; b = 36; c = +32;
Δ = b2-4ac
Δ = 362-4·9·32
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-12}{2*9}=\frac{-48}{18} =-2+2/3 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+12}{2*9}=\frac{-24}{18} =-1+1/3 $
| 10z+6+8z+2=224 | | 7x-5=5x+237x | | 8(v-2)=-2v-36 | | 13x+37=180 | | 2|x-5|+7=14 | | 2(7g+2/3)=14g+4/3 | | 5z+4z+2+z+3=55 | | 7y+3y-8=82 | | b+30=50 | | 1+5p=9+4p-9 | | +0.25)^x-3=32 | | -9x+0=36 | | 6x-6=9x-59 | | 1-3h=h-5h-6 | | 14y+6=90 | | 7c=4c-9 | | 3f+9=6f+3 | | 5c+-2c+19=18 | | -3|x-4|-4=3 | | 7+9z=8z | | 0=10x+50 | | -4s=-5s-8 | | j-10=4j+5 | | 6(3n+1)-3(-1-2n)=n+2n | | 2,378,000+20x=3,000,000 | | 2b=6+3b | | 2j+9=5j | | M+8=22+2m | | -7k=-10-8k | | m-29/6=89/9 | | 12x+14=19x-28 | | X=18-26i |